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Abstract

Studies support the need for high resolution imagery to

identify persons in surveillance videos[13]. However, the

use of telephoto lenses sacrifices a wider field of view and

thereby increases the uncertainty of other, possibly more in-

teresting events in the scene. Using zoom lenses offers the

possibility of enjoying the benefits of both wide field of view

and high resolution, but not simultaneously. We approach

this problem of balancing these finite imaging resources –

or of exploration vs exploitation – using an information-

theoretic approach. We argue that the camera parameters

– pan, tilt and zoom – should be set to maximise informa-

tion gain, or equivalently minimising conditional entropy

of the scene model, comprised of multiple targets and a

yet unobserved one. The information content of the for-

mer is supplied directly by the uncertainties computed us-

ing a Kalman Filter tracker, while the latter is modelled us-

ing a ”background” Poisson process whose parameters are

learned from extended scene observations; together these

yield an entropy for the scene. We support our argument

with quantitative and qualitative analyses in simulated and

real-world environments, demonstrating that this approach

yields sensible exploration behaviours in which the camera

alternates between obtaining close-up views of the targets

while paying attention to the background, especially to ar-

eas of known high activity.

1. Introduction

Object detection and tracking of objects in video data

are crucial elements for further reasoning in modern vision-

based systems. In the context of video surveillance, a

high coverage of supervised area is desired to maximise the

number of object detections, which are then used for fur-

ther processing, e.g. identification or classification. These

tasks usually require or profit from a higher resolution [13]

that usually cannot be obtained from cameras that serve to

overview the scene. Since the cost of installation and re-

sulting amount of video data to be transferred, stored and

observed prohibits naı̈ve addition of cameras, an alternative

solution is to use cameras with a pan/tilt/zoom (PTZ) func-

tionality, which explore the area in a sensible fashion and

focus onto occurrences of interest to surveillance. Not only

are these devices readily available commercially, but also

obviates the restriction to a single camera the need to relate

several cameras to each other spatially. Unfortunately, the

exploration of the scene conflicts with a close-up inspection

of objects of interest. Zooming into a part of the scene de-

creases the field of view of the camera, and areas with pos-

sibly interesting behaviour are not covered any longer. Fur-

thermore, in active zoom control a balance has to be struck

between the maximum attainable zoom onto an object and

the risk of losing lock.

These problems are directly addressed in our work,

which presents a new method to schedule a single active

camera by making use of a probabilistic framework. We

address three issues: firstly how to explore the scene to

search for new, yet undetected actors; secondly how to de-

cide which of the detected actors to observe more closely;

and finally how far to zoom onto the chosen target, min-

imising the risk of losing track.

Specifically, we use the information–theoretic concept

of entropy to measure the uncertainty of each object in the

scene and to compare the utility of pan/tilt/zoom settings for

decreasing these uncertainties. We use an activity map to

incorporate scene specific actor behaviour. This map keeps

track of the rate actors appear in this area of the scene, and is

modelled by a Poisson process for each location. The prob-

ability of making a new detection is obtained from the loca-

tions which are missed when a set of parameters is chosen.

This acts as a counterbalance for the zoom onto the actors.

The best parameters are the ones which maximally reduce

the uncertainty of all, or a subset of, actors and minimise

the chance of an undetected appearance of a new actor.

We compare our method with standard approaches using

recent metrics and a new one, which measures the increase

in area of observations when using a given scheduling algo-

rithm. For repeatability, we test the scheduling policies on

a common video data set with available ground truth data,



and on a new sequence which has been preprocessed with a

background detection algorithm. Both tests yield confirm-

ing results.

2. Related work

Camera scheduling has been addressed in some recent

work by the vision community. Qureshi et al. [14] used

a first come, first serve rule in their simulator, based on

evaluations of network routing algorithms [4]. Contrary to

our work, they use a supervisor camera to make wide area

observations and to coordinate PTZ control. This kind of

master–slave–configuration is also used by Bagdanov et al.

[1], who considers scheduling as a dynamic discrete opti-

misation problem. All works address the camera assign-

ment problem, i.e. more persons to be observed than cam-

eras available, but not the zoom selection. All authors use

synthetic data to run evaluations for control of one or sev-

eral PTZ cameras.

Hampapur et al. [10] uses hand crafted rules to assign ac-

tive cameras to actors, and chooses the zoom setting via

geometric reasoning. The system uses multiple calibrated

supervisor cameras for 3D tracking, and incorporates a head

detector to focus the zoomed view onto the face of persons.

A disadvantage of supervisor cameras is the need for a map-

ping of image contents to the active camera, which has to be

obtained from restricted camera placements, movements or

temporally extended observations [7, 14, 15].

Probabilistic reasoning for camera zoom control is used

by Tordoff et al. and Denzler et al. [6, 18] to minimise the

chance of losing the target while maximising zoom level at

the same time. Whereas both works address only one target,

the latter makes use of a stereo platform to track in 3D.

We are aware that the concept of scene activity has been

studied intensely [11, 12, 17]. We would like to stress that

this paper is neither about a new tracking or scene activity

analysis method. Instead, our concern is how these results

can be used for camera scheduling. Davis et al. [5] use

detected motion from randomly chosen pan/tilt settings to

learn a map which is then used to select future camera pa-

rameters. The authors propose several methods to navigate

through the learned map, but all goal locations are chosen

randomly by assuming the map entries stem from an unnor-

malised probability distribution. Another kind of activity

map can be found in Gould et al. [9]. Here, a sophisticated

perceptual model is learned and used to drive the focus of

attention. Objects are classified in a close-up view which

is selected from a wide angle view having a high chance

of containing classifiable objects. The actual distribution is

given by a previously trained Bayes network.

3. Active Zooming vs Exploration

One goal of our system is to track objects and obtain

images at a high resolution to aid in processing steps, e.g.

identification or classification. For this, we desire minimal

uncertainty in the location of the objects. At the same time,

the zoom is bounded by the uncertainty of the object’s mo-

tion, as well as its spatial extent.

We make use of the same optimality criterion for the se-

lection of the camera parameters as Denzler et al. [6]. How-

ever, while Denzler’s work is specifically concerned with

optimising tracking accuracy, we are seeking balance be-

tween this and the possibility of acquiring new targets.

The criterion is as follows: Before making an observa-

tion at time t, we choose the best parameter at for the obser-

vation. The parameter at summarises the different settings

for the observation process, i.e. pan, tilt and zoom. Among

all choices, this parameter will maximally reduce the ex-

pected uncertainty in a given probability distribution of the

true state xt. Applying the chosen parameter yields an ob-

servation ot which is finally used to update the distribution

p(xt).
A natural measure for the uncertainty is the expected

conditional entropy

Hat
(xt|ot) = −

∫∫
p(xt,ot|at) log(p(xt|ot,at)) dxtdot

(1)

The best parameter a is then found by minimisation of

this entropy:

a∗
t = arg min

at

Hat
(xt|ot) (2)

In the following two sections we will first summarise the

results of Denzler et al., then introduce our approach for

scene exploration.

3.1. Object Tracking

We assume independence of the objects in the scene,

and assign each detection a Kalman filter. Our observation

model is the position and bounding box of the object in the

2-d image plane. The state model for each of the tracked tar-

gets is the position, velocity and extent in each coordinate.

The motion model is a simple constant-velocity target for

the position and velocity [2], whereas the width and height

are assumed to be constant.

The differential entropy of such a Gaussian distributed

state vector x with covariance matrix P is

H(x) = 3 +
1

2
log((2π)6|P|). (3)

We use the notation x̂+
t for a state which has been up-

dated with the latest observation ot, and x̂−
t the state which

has been predicted by the Kalman filter, but not updated be-

cause no observation was made. The analogous notation is

used for the covariance matrices, P̂+
t and P̂−

t , respectively.

The conditional entropy in equation 1 integrates over the

domain of all observations. This domain can be split into



the area inside (v) and outside (¬v) the image. The integral

then splits into a part where the target is visible, and a part

where it is not visible:

Hat
(xt|ot) =

∫
v

p(ot|at)H(x̂+
t ) dot

+

∫
¬v

p(ot|at)H(x̂−
t ) dot (4)

Since the entropies of the state estimate H(x̂+
t ), H(x̂−

t ) do

not depend on the actual observation o, this integral can be

simplified to

Hat
(xt|ot) = w(at)H(x̂+

t )

+ (1 − w(at))H(x̂−
t ) (5)

The factor w(at) =
∫

v
p(ot|at) dot expresses the probabil-

ity of making an observation of the object in the image. We

simplify the evaluation of this integral by making use of the

error function for the integral over the Gaussian distribution

of the position, assuming axis alignment of the observation.

We weight this result by the expected observed area of the

bounding box.

We give an example of the resulting behaviour on a se-

quence from the HERMES Outdoor dataset, camera 1[8].

Figure 1 shows the temporal development of the zoom se-

lection process, with images corresponding to the resulting

zoom settings on the left. The right column shows the prob-

ability of making an observation, w, and the expected en-

tropy, H , over a given zoom range (1x to 4x). Frame 442

(1a) shows the full view of the scene right after initialisa-

tion of a Kalman filter on a newly detected target, and the

1σ covariance ellipse of the location. Due to this high initial

uncertainty and its proximity to the edge of the field of view,

the probability of making an observation is low, but highest

for the smallest zoom setting. In this case it is “1x”, as in-

dicated by the label a∗ in the figure. For this frame, zoom

selection is governed by the chance of making a visibility.

Five frames later, at frame 447 (1b), the position is more

certain since the target has been reliably tracked for a short

time, as shown by the smaller covariance ellipse. The con-

fidence in making an observation has increased, to a con-

stant maximum of one up to the zoom value of 2x, where it

slowly drops. There, the entropy also rises. The minimum

of the entropy effectively defines the highest zoom setting

which does not risk a loss of the target. A similar behaviour

is shown in the last row (1c), which portrays frame 458 of

the sequence. Here, the camera started panning to follow

the object.

The development of the entropy for a single target and

its visibility is shown for the first 20 frames after the initial

detection in figure 2.
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(a) Frame 442

1 2 3 4
0

0.5

1

v
is

ib
ili

ty

zoom a

← a
*

 

 

1 2 3 4
−50

−40

e
n

tr
o

p
y

 

 

w H

(b) Frame 447
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(c) Frame 458

Figure 1. Visibility term w and entropy H(x|o) (see equation 5)

for given levels of zoom for frames 442, 447 and 458 of the HER-

MES Outdoor sequence, camera 1. (a) after the initialisation of

a Kalman filter on a new object. (b) The covariance gets smaller,

and the confidence in the visibility rises. The camera zooms in.

(c) The camera pans to follow the object.
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Figure 2. Visibility term w (left) and entropy H(x|o) (right) for

consecutive frames in the HERMES sequence. The frames 442,

447 and 458, detailed in figure 1, have been highlighted.

3.2. Poisson process for unobserved events

Imagine a street scene where pedestrians show up regu-

larly, but unpredictably. The street has a lot of houses and

doors - nearly everywhere a person can appear. The abso-

lute times of two appearances are independent random vari-

ables - the number of appearances before an occurrence is

independent of the number of the following ones.

In the following discussion, an appearance of an object



is modelled by a homogeneous Poisson process for every

location at which it can show up. The waiting time T until

the next appearance of an object at location y thus has an

exponential distribution with the appearance rate λ(y). The

probability of no appearance after having waited for time t
is

p(T > t,y) = e−λ(y)t (6)

The chance of an activity (one or more appearances) ht at

location y since the last observation t0(y) is thus

p(T < (t − t0(y)),y) = p(ht,y) = 1 − e−λ(y)(t−t0(y))

(7)

Assuming that all probabilities of appearance at loca-

tions y are independent, the probability of making an ob-

servation in a given view Ft is:

p(ht|Ft) = 1 −
∏

y∈Ft

1 − p(ht,y) (8)

= 1 −
∏

y∈Ft

e−λ(y)(t−t0(y)) (9)

= 1 − exp(−
∑
y∈Ft

λ(y)(t − t0(y))) (10)

An object is detected by the system if it is in the field of view

F of the camera. Once an object is detected, the object is

tracked by a Kalman filter. If the object leaves the scene

(out of the maximum field of view of the camera, or beyond

a certain region of interest in the scene), the Kalman filter is

stopped and the object is not considered any more.

We seek to reduce the uncertainty in our scene model

as much as possible at each time step. As in the previ-

ous section, we take the entropy as a natural measure of

uncertainty. Under the assumption of independence of ob-

jects, this entropy reduces to the sum of the entropy terms

of all objects, which comprises of the set T of tracked ob-

jects and one which has potentially appeared and remained

undetected (Hu):

H = Hu(xk+1,t) +

|T |∑
k=1

Htracked (xk,t) (11)

Whereas we denote the state of object k at time t as xk,t.

In this formulation, only one previously undetected ob-

ject can appear. The entropy of such an undetected object

depends on the probability p(ht|F) of an appearance at time

t in field of view F :

Hu(xk+1,t) = p(ht|F)Htracked (xk+1,t0)

+ (1 − p(ht|F))Ĥu (12)

The entropy Htracked (xk+1,t0) is the entropy of the object

after instantiation of a new tracker, whereas Ĥu is a constant

equal to the uncertainty in the state of the undetected object.

It can be interpreted as the entropy of a uniform distribution

of the object being in the now unsupervised areas or not

having appeared yet - in practice, it is set to be the logarithm

of ten times the covariance of the uninitialised tracker.

Let pk,t = p(ht|Ft) be the probability of an observa-

tion of an object k at time t and correspondingly Htr,k,t =
Htracked (xk,t|ok,t,Ft) be the entropy of a tracked object.

The relative entropy to the next time-step is thus

Ht+1 − Ht =

|T |∑
k=1

(Htr,k,t+1 − Htr,k,t)

+ pk+1,t+1Htr,k+1,t0

+ (pk+1,t − pk+1,t+1)Ĥu (13)

≈

|T |∑
k=1

(Htr,k,t+1 − Htr,k,t)

+ pk+1,t+1(Htr,k+1,t0 − Ĥu) (14)

Here, we approximate equation 13 by assuming that at cur-

rent time t the probability pk+1,t of finding a new object

k + 1 in the current field of view is 0. This effectively dis-

regards missed detections, but can be mitigated by overes-

timating the appearance rate. If all known targets are suffi-

ciently well tracked, a view Ft is chosen which reduces the

entropy by tracking a new object, weighted by the chance of

its appearance. This view can exclude other, already tracked

objects - the uncertainty in their position rises, increasing

their entropy Htr,k,t+1.

3.3. Multi­ vs single target tracking

As outlined in the previous section, the requirement to

optimally observe all targets results in minimising the en-

tropy of all targets at the same time. The behaviour will be

fairly predictable, mainly a concentration on the detected

targets and limited exploration of the scene. It might be

more sensible to direct attention on a new target first, then

move to the old one to confirm its position, and thenceforth

supervise both of them at the same time.

To address the concept of novelty a new target intro-

duces, or the importance of a target which has not been

under scrutiny for a longer period of time, the best action

is the minimum relative entropy to the next action selection

step

a∗
t = arg min

at

∆H (15)

where ∆H = Ht(xt|ot,at) − Ht−1(xt−1|ot−1,at−1) is

the reduction in entropy in one time step. Furthermore, the

choice of the objects to be tracked is considered. Instead of

focussing onto a single target, any subset Ω of the currently

tracked targets might yield the best decrease of uncertainty

a∗
t = arg min

at,Ω

∑
Ω

∆H (16)



This gives us three different choices of policies. The

minimum joint entropy of all targets is simply the sum of all

single entropies. The minimum relative entropy chooses the

target which yields the greatest overall gain in information.

The third choice is the extension of the latter to a subset of

targets.

3.4. Learning scene activity

In most scenes there are areas where fewer events of in-

terest will occur, e.g. the appearances and disappearances

of pedestrians are limited by walls, or parts of a camera’s

view can be blocked. Whereas these areas could be speci-

fied by user input, such as entry and exit points, in this work

we learn these entry points from longtime observations by

modelling the appearance rate λ(y) for every scene point

y. The appearance rate is trivially obtained as the average

over all detected appearances for each pixel. An example of

such an appearance map is shown in figure 3 for both view-

points in all sequences of the EC-funded CAVIAR “shop-

ping mall” data set 1.

Figure 3. Appearance in corridor and frontal view of the CAVIAR

“shopping mall” data set.

4. Evaluation

Evaluating scheduling algorithms on live video data is

difficult. For a fair comparison, each algorithm should run

on the same input, which is difficult to obtain with human

actors. Pre-recorded video can be used for evaluation if the

resolution is high enough to support a “virtual zoom” ap-

proach, where the image is down-sampled and cropped to

a desired field of view. A high resolution is required if ob-

ject detectors or trackers are to be run on the down-sampled

image.

The approach used in this paper is simulation based on

ground-truth data. We use the annotations supplied with the

CAVIAR test case scenarios and add Gaussian noise of 1
pixel to the labelled bounding boxes. This also removes

other sources of error in the evaluation, e.g. from detec-

tion, tracking and and data association. Each detection is

assigned a Kalman filter, which is used to obtain the un-

certainty of the tracking as described in section 3.1. The

Kalman filter uses an observation noise of 1 pixel, and pro-

cess noise of 0.05 units (both for 1σ). A track is lost if for

1EC Funded CAVIAR project/IST 2001 37540, found at URL:

http://homepages.inf.ed.ac.uk/rbf/CAVIAR/

more than 10 frames no observation has been made, the tar-

get leaves the maximum field of view, or the expected mea-

surement does not overlap with the actual measurement.

4.1. Metrics

The metrics we use are the latency, the fragmentation of

a track, and the overall coverage of all tracks compared to

the ground truth. The latency is a measure for the delay of

the detection of a target in the scene, e.g. when the camera

is currently zoomed onto another target.

A track is a list of continuous observations, either from

ground truth, or tracked by the Kalman filter. The aver-

age spatial coverage of a track is the relative overlap of the

ground truth and observed bounding boxes, as introduced

in [19]. This metric is less than one if the camera is not

constantly observing the object. For example, if an object is

seen only during half of the time it resides in the scene, its

average spatial coverage would be 0.5.

The fragmentation of tracks into several partial trajecto-

ries due to tracking loss is measured by the number of false

positives (FP) and false negatives (FN) of the track associ-

ation. A track is considered a false positive if the average

spatial coverage is above a threshold (here: 0.25), but the

temporal overlap is too small (here: 0.16) . A track is con-

sidered a false negative if it is overlapping either spatially

or temporally below given thresholds, and a true positive if

it fulfils both criteria.

The overall coverage is the relative increase of object

area due to zooming. This metric measures the average ob-

served area, relative to the ground truth value. Successfully

observing the whole scene, i.e. all contained targets, with

a zoom setting of 2 would result in an overall coverage of

2. The reasoning behind this metric is that higher resolu-

tion benefits following tasks, such as identification or action

recognition, a claim supported by recent studies[13].

4.2. Experiments

We made two experiments, one with a constant appear-

ance rate for every pixel and a full overview over the scene,

and one where the appearance rate has been determined a

priori from the data set (see figure 3), and the camera is

required to explore the scene because it can never observe

it as a whole. The experiments evaluated the performance

of the entropy minimisation scheduling for single, all and a

subset of targets with a maximum number of 3 targets. In

the latter case, if a further target was within the bounding

box spanned by the bounding number of targets in the sub-

set, it is added to the evaluation. We furthermore evaluated

standard rule based scheduling methods, i.e. random selec-

tion of targets and the first come, first serve rule (FCFS) as

used by [14].

For the first experiment we assume a minimum zoom set-

ting which allows to observe the whole scene. Such a setup



simulates a ’virtual zoom’ camera, which simply downsam-

ples or resizes image regions from a sensor with a higher

resolution. Another example for such an input is high def-

inition video, which can be processed much faster by re-

stricting analysis to the relevant parts of the image[3]. In

this experiment, we set the maximum zoom to 3. The av-

erage activity of the scene pixels λ has been chosen as one

appearance every minute, every 12 and full second, or 5 ap-

pearances per second, respectively.

The number of false positives, shown in figure 4, shows

that with entropy based scheduling methods more tracks are

not assigned to any of the ground truth tracks, i.e. yield a

higher fragmentation of tracks. This is effectively the num-

ber of targets which needed to be initialised again due to

a longer focus onto other targets. The false negatives in

figure 4 shows how the number of completely missed tar-

get goes down if the appearance rate is high enough. For

both of these figures, the absolute number of targets in all

sequences is 324. While the methods barely differ in the

latency (figure 5, left), the advantage of the methods pre-

sented here can be seen in figure 5, where the entropy based

scheduling methods result in a better coverage of the targets.

λ/s Subset All 1

1/60 14 14 12

5/60 14 15 13

1 13 19 12

5 14 16 9
(a) FP. FCFS: 11, Random: 15

Subset All 1

1 6 5

1 6 5

0 0 6

0 0 5
(b) FN. FCFS: 4, random: 3

Figure 4. False positives (FP): reacquired targets and False Nega-

tives (FN): missed targets, both out of a total of 324.

λ/s Subset All 1

1/60 4.94 4.78 4.83

5/60 5.02 4.88 4.84

1 5.11 4.93 4.87

5 5.03 4.96 4.80
(a) FCFS: 4.90, Random: 5.11

Subset All 1

1.69 2.18 1.65

1.62 2.11 1.61

1.59 1.65 1.58

1.58 1.53 1.56
(b) FCFS: 1.13, Random: 1.38

Figure 5. Latency in frames (left) and Observation area relative to

ground truth (right) for constant appearance rates.

The second experiment compared the algorithms with a

minimum zoom value of 2 and a maximum of 4, which

requires an exploration, or scanning, of the scene. The

camera settings continuously have to balance the reduction

in uncertainty for a few targets with the risk of missing

a target in the area currently not observed. The result is

shown in figure 6. In addition to the standard methods of

scanning (‘scan’), random target selection (‘rnd’) and first–

come–first–serve (‘fcfs’), we added a background–only pol-

icy (‘bg’), which results from searching for a new target

only, without taking any tracking based utility into account.

This last method, as well as the methods described in sec-

tion 3.3 – all (‘a’), single(‘s’), subset (‘o’) – have been

evaluated with and without local scene activity (label aug-

mented with ‘+p’ in the latter case).

The poor performance of scanning, background-only,

random and FCFS is easily explained. The first two meth-

ods simply scan the parameters in a more or less sensible

fashion. They do not react to detected targets at all. FCFS

profits from the tie-breaking rule of observing the oldest tar-

get next, but both FCFS and the random rule fixate onto an

object only for a fixed time, not considering the state of the

objects already visited or the duration the rest of the scene

has been without observation. Apparent is the increase of

the overall coverage when using the local appearance rates.

The points of high activity are more often visited than the

less active areas of the scene.

scan bg bg+p rnd fcfs s s+p a a+p o o+p
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Figure 6. Second experiment. Box plot of area covered by dif-

ferent scheduling methods on CAVIAR data set. Measured area

is relative to unzoomed ground truth. See text for explanation of

labels.

5. Conclusion and Future Work

This paper presented a method of scene exploration com-

bined with zoom control. We extended the information the-

oretic framework pioneered by Denzler et al. [6], in which

the choice of zoom, pan and tilt settings is driven by the

maximal expected decrease in uncertainty augmented by the

likelihood of making an observation. To control the explo-

ration of the scene, we added the uncertainty of a potential,

yet unobserved target to this criterion. The chance of an ap-

pearance of a target is modelled by local Poisson processes;

the chance of making an observation thus rises with the time

passed since the last observation of this location. This acts

as a counterbalance to the zoom-in behaviour, and yields

behaviour in which a target is tracked while its surrounding

area is maximally covered by observations.

The zoom onto a current target is discouraged once the ex-

pected decrease in uncertainty is higher for a new, potential

target which has not yet been detected. We extended this

reasoning to multiple targets. Here, the potential acquisi-

tion of a new target must provide more information than a

subset of targets which can be observed simultaneously. We



evaluated the performance of this scheduling policy with re-

spect to existing and new metrics. These were in particular

the analysis of latency of the target detection, the increase

of observed area, and the number of missed targets.

Several shortcomings of the current method will be fo-

cus of our attention in future work. The assumption of in-

dependence of the random processes governing appearance

at location y is not correct. This dependency can be approx-

imated by finding typical trajectories in a scene (e.g. [11]).

Furthermore, the simplifying assumption that the targets are

independent leads to difficulties when targets are overlap-

ping. Our future research aims to address this issue by in-

cluding the dependency into the entropy framework, thus

reacting accordingly when the objects are approaching each

other. Lastly, we do not incorporate any movement cost into

the camera parameter selection process. A change of zoom

by one motor step is considered equally fast as a pan and

tilt across the whole field of view. This can lead to abrupt

behaviour and suboptimal paths when the parameter selec-

tion process is myopic, i.e. a greedy, one step look-ahead.

We are therefore looking into methods to efficiently solve

for multi-step plans to select the camera parameters[16].
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